

rtcshell: Command-line tools for OpenRTM-aist

Geoffrey BIGGS and Noriaki ANDO and Tetsuo KOTOKU

Intelligent Systems Research Institute
National Institute of Advanced Industrial Science and Technology (AIST)

Component-based software is a major recent design trend in robotics. It brings many benefits to
system design, implementation and maintenance. The management of such systems often depends on
graphical tools. These tools are powerful and provide a rapid way to layout component networks.
However, they also typically require considerable resources to run. This is not ideal in robotics, where
low-resource environments are common. We have created a set of command-line tools for use with
the OpenRTM-aist component-based robot middleware. The tools follow the UNIX philosophy of sim-
plicity and aggregation. These tools allow whole component-based systems to be created, managed
and monitored from a command-line. They are ideal for use in environments where a graphical interface is
not available. By combining tools together using shell scripts, more complex functionality can be easily created.

Key Words: Robot programming systems, component-based architectures, RT-Middleware

1. Introduction

A key part of using component-based robot software,
such as architectures such as OpenRTM-aist [1] and
ROS [2], is interacting with the component network that
makes up the software system. Interaction may be via a
specialised tool designed to monitor a specific network of
components, or a generic tool for the component archi-
tecture upon which the software system is built may be
used. In some cases, no such tool may be available, with
all interaction via text files.

This paper presents a set of tools for managing
OpenRTM-aist-based systems, known as RT-Systems.
These tools differ from the usual approach in that they
apply a file-system abstraction to the components for
interaction, they are command-line tools and they fol-
low the UNIX philosophy of doing one thing well, using
aggregation to add power. It shows that such a collec-
tion of simple tools gives great flexibility and ease of use
to developers creating and managing component-based
robotics software, where the interaction method may be
constrained by unique environmental factors.

2. OpenRTM-aist

OpenRTM-aist [1] is a component-based architec-
ture for intelligent systems. The central concept
in OpenRTM-aist is the RT-Component. An RT-
Component’s internal state can be monitored and con-
trolled. In order for a component to begin executing, it
must be placed in the Active state. Execution can be
terminated by returning it to the Inactive state. If an er-
ror occurs in the component, it moves to the Error state.
A component network is formed by making connections
between ports of components.

OpenRTM-aist uses CORBA [3] as its communications
layer. Components must register on a known name server.
Typically, components are organised on the name server
using naming contexts below the root context in order to
provide hierarchical categorisation.

3. Interacting with RT-Systems

OpenRTM-aist uses a tool, known as RTSystemEdi-
tor, for interacting with and managing the components
of RT-Systems. This tool can be used both at system-
construction time to create a component network, and at
run-time to monitor the health of and to alter the com-
ponent network.

Unfortunately, the use of a graphical tool has certain
requirements that cannot always be met:

• A graphical tool uses valuable resources in a low-
resource environment, such as a robot’s internal com-
puter.

• Running the graphical tool from a remote computer
may not be possible due to a lack of a network con-
nection..

• Graphical tools cannot easily be scripted to perform
repetitive tasks.

Inspired by the difficulty in using RTSystemEditor on
our outdoor robots, we have experimented with tools for
OpenRTM-aist that do not rely on a graphical interface.
These tools treat RT-Components as part of a pseudo-file
system structured around the naming services to which
they register.

4. Shell utilities for OpenRTM-aist

The set of tools created are collectively called rtcshell.
The tools follow the UNIX philosophy of doing one thing
and doing it well.

4.4.1 File system layout
The pseudo-file system provides information about and

addressing of all known OpenRTM-aist objects. Its gen-
eral structure is illustrated in Figure 1. All paths branch
off from a single root node, /. Below this root are all the
known root naming contexts, each of which represents a
naming service, and which contain other naming contexts
(treated as directories) and “files.”

2P 2

2P 2 (

N . 0 4 Pr d n f th 20 0 J nf r n n R b t nd h tr n , h , J p n, J n 6, 20 0

Figure 1: The general structure of the pseudo-file system
used by the rtcshell utilities, dubbed the “RTC Tree”.
The root node is at the top of the file system tree. The
blue triangles are naming service nodes. Red ovals are
naming contexts below a root context. Green boxes are
RT Components. The yellow hexagon is a manager. Be-
low it are aliases to the two RT Components it is manag-
ing.

The files of the pseudo-file system are RT-Components.
A file “contains” information about the component it rep-
resents, such as its state and its available ports.

Manager objects, used by OpenRTM-aist to manage
running component instances, are also present in the tree.
They are treated as directories containing aliases to the
components they manage.

4.4.2 Navigating the pseudo-file system
rtcshell includes some commands that allow the user to

change their focal point in the pseudo-file system. rtcwd,
which behaves like the standard cd command, is used
to change the current working directory. The current
working directory can be displayed using rtpwd.

The rtfind command searches the pseudo-file system
for nodes matching given search criteria, such as being of
a specific type or matching a file name.

The rtls command lists a directory’s contents. Like its
standard namesake, this has both short and long forms.
The long form will also display some brief useful informa-
tion about components, such as their current state. It is
useful for monitoring the state of running components.

4.4.3 Viewing component information
The component “files” in the pseudo-file system contain

information that can be viewed with the appropriate tool.
These are:

• rtcat prints out information contained within a com-
ponent, such as the component’s state and its ports.

• rtconf is used to display and alter component pa-
rameters, including the active parameter set.

• rtprint displays the data being sent over an output
port.

4.4.4 Manipulating components
The following commands are used to change the state

of components:

• rtact activates a component, causing it to being ex-
ecuting.

• rtdeact deactivates a component, halting its execu-
tion.

• rtreset resets a component, moving it back to the
Inactive state after an error has interrupted execu-
tion.

As mentioned earlier, the rtls or rtcat commands can
be used to monitor component state.

Connections between ports are managed using three
commands:

• rtcon connects two ports together. Ports of a com-
ponent are specified at the end of the component’s
path, separated by a colon.

• rtdis removes a connection between two ports, or all
connections from a port or component.

• rtinject injects data into a port. This is useful to
send data to a component without using another
component.

rtcat can be used to check the connections of a port.

4.4.5 Managers
Managers are used to deploy and manage components.

The rtmgr tool is used for working with managers. With
it, developers can load and unload modules, and create
and destroy component instances. rtcat is also capable
of working with manager nodes in the pseudo-file system,
printing information about the loaded modules, managed
components, and so on.

5. rtsshell

rtcshell only works with individual components. An
additional set of tools was created for manipulating en-
tire RT Systems, “rtsshell”. They work with RTSProfile-
format XML files, which describe RT Systems.

• rtcryo examines all components on all known nam-
ing services and creates an RTSProfile for those with
connections.

• rtteardown uses an RTSProfile file to remove all con-
nections in an RT System.

• rtresurrect is the opposite of rtcryo and rtteardown.
It reads an RTSProfile-formatted file and uses it to
reconstruct a complete RT System.

• rtstart is the tool responsible for activating the com-
ponents of the RT System.

• rtstop stops the RT System by deactivating the in-
volved components.

2P 2 (2

N . 0 4 Pr d n f th 20 0 J nf r n n R b t nd h tr n , h , J p n, J n 6, 20 0

6. Discussion

The command line tools maintain the UNIX philoso-
phy of doing one thing and doing it well. Each tool is
specialised for an individual task. However, while each
tool is simplistic by itself, the collection as a whole is
both flexible and powerful. This is particularly the case
when they are combined with a scripting system such as
a shell scripting language. As with all UNIX tools, ag-
gregation gives these simple tools their power.

The tools are designed with this in mind. For exam-
ple, combining the standard UNIX watch command and
rtls -l gives a continuously-updating display of compo-
nent state, allowing their health to be monitored in real
time. A list of all output ports of a component can be
obtained by combining rtcat and grep. The shell script
for command can be combined with rtfind and rtact to
activate all components matching a given name specifica-
tion.

rtcshell’s strength is in quickly creating small systems
for experimentation, for managing both large and small
RT Systems, and for automation of common tasks. No
other system currently matches all of rtcshell’s function-
ality.

7. Conclusions

This paper has described a set of simple, single-purpose
command-line tools for interacting with and managing

RT Components and component networks based on the
OpenRTM-aist robot middleware. The tools treat a set of
known components as though part of a file system. The
user can navigate around and inspect known components
in a console. This form of interaction is particularly well
suited to the low-resource environments that are com-
monly found in robotics. The tools can also be scripted
using standard shell scripting facilities. We believe that
such a set of command-line tools adds additional usabil-
ity to robot-oriented component-based software architec-
tures.

References

[1] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and
W.-K. Yoon, “RT-middleware: distributed compo-
nent middleware for RT (robot technology),” in In-
telligent Robots and Systems, 2005. (IROS 2005).
2005 IEEE/RSJ International Conference on, August
2005, pp. 3933–3938.

[2] (2009) ROS.org. [Online]. Available: http://www.
ros.org

[3] M. Henning and S. Vinoski, Advanced CORBA Pro-
gramming with C++. Addison-Wesley Professional,
1999.

2P 2 (

N . 0 4 Pr d n f th 20 0 J nf r n n R b t nd h tr n , h , J p n, J n 6, 20 0

