

RT-Middleware: Distributed Component Middleware
for RT (Robot Technology)

Noriaki Ando, Takashi Suehiro, Kosei Kitagaki, Tetsuo Kotoku and Woo-Keun Yoon
Intelligent Systems Research Institute

National Institute of Advanced Industrial Science and Technology (AIST)
AIST Tsukuba Central 2,Tsukuba,Ibaraki 305-8568, Japan
{n-ando, t.suehiro, k.kitagaki, t.kotoku, wk.yoon}@aist.go.jp

Abstract— In this paper, we propose RT-Middleware for robot
system integration. “RT” means “Robot Technology”, which is
applied not only to industrial field but also to nonindustrial field
such as human daily life support systems. RT-Middleware which
is proposed in this paper is a software platform for RT systems.
We have studied modularization of RT elements and have
developed RT-Middleware, which promotes application of RT
in various field. Robotic system development methodology and
our RT-Middleware concepts is discussed. The RT-Component,
which is a basic software unit of RT-Middleware based system
integration, is derived from this discussion. A methodology of
system development by using RT-Components, and a framework
for component development are proposed. Evaluations of some
RT-Component based systems is performed. Finally conclusion
and future work will be described.

Index Terms—RT (Robot Technology), software component,
middleware, robot system, system integration

I. INTRODUCTION

The researches on the system integration of a basic robot
function are becoming important in robotics in recent years.
Robotics has already had the accumulated knowledge of
robotic basic functions enough to realize simple intelligent
tasks to make human daily life more convenient. Robotic
researches that try to apply robotic functional elements to full-
scale application are also active. Intelligent environment and
ubiquitous computing are potential full-scale application for
robotic system integration.

From such backgrounds, the necessity for the knowledge for
systematic robot system integration has increased. As shown
in Figure 1, the methodology for robot system integration
independent from persons’ experience and knowhow, and
robot system platform to support it are also needed.

Component

Complex robot systems

Component

Network

Function
Specification

Analysis
model

Design model

Real system
Experience, knowhow

Person dependent system design

Systematic design

Systematic
RT system integration

Implementation framework
Distributed object middleware

Modeling framework
Modeling pattern

Fig. 1. A Robot Systems Modeling Flow: The RT system should be modeled
and designed through systematic design flow independent from the persons’
experience and knowhow.

We started RT-Middleware project from 2002 under
NEDO’s (New Energy and Industrial Technology Develop-
ment Organization) “Robot challenge program”. Basic func-
tions for robot software platform which supports complex
robot system integration have been studied. The purpose of this
project is to establish basic technologies for integrating robot
systems with a new function easily by modularized software
components which constitutes robot systems.

If robot systems with new functions can be constructed
more flexibly, it can satisfy every users’ needs individually
which cannot be satisfied now. Thus, it is expected that the
conventional robot industry mainly restricted to the manufac-
turing field will be expanded to the nonmanufacturing field
like support robots for daily life.

A. Related research

Research about software modularisation of robot functions
and development of software libraries for robotics are per-
formed actively in recent years.

ORiN (Open Resource interface for the Network/Open
Robot interface for the Network) is a middleware which
offers the standard communication interface over various FA
apparatus including robots [1], [2]. The specification of ORiN
is released from the ORiN consortium, in which almost all the
Japanese industrial-robots maker has affiliated. Orocos (Open
Robot Control Software / Open Realtime Control Services)
is a free software project for robotics [3], [4]. However
it has outgrown its robotics-dependent roots. “Open Robot
Control Software” is a set of class libraries and an application
framework offering generic functionality for machine tools and
robots. “Open Realtime Control Services” is a hard realtime
kernel for all possible feedback control applications, fully
independent of the project’s original robotics focus. ORCA
(Open Robot Controller architecture) developed in Toshiba is a
HORB (Java ORB developed in AIST) based robot controller
architecture [5], [6]. In Toshiba’s home robot “ApriAlpha”,
functional components are integrated and controlled using
ORCA. They expects ORCA to play a key role in advancing
the use of robots in a variety of fields. OPEN-R is the
standard interface for the entertainment robot system that
SONY is actively promoting. This interface greatly expands
the capabilities of entertainment robots like AIBO, SDR-
3X and QRIO. AIBO’s reconfigurability is realized because
software and hardware are completly modularized by Open-
R.

On the other hand, one of our purpose is to define a set of
standard interface of the software component for robots, which
makes interconnection possible. Since the standard interface
specification is free and open, any vendors can implement mid-
dleware based on this interface specification. To provide open-
source middleware based on the interface is another purpose.
Getting feedback from actual application use, improvement of
the specification will be advanced. Final target is to establish
a systematic robot system design theory derived from the
knowledge of component-oriented robot system integration.

B. Goals of RT-Middleware

The purpose of RT-Middleware project is research and
development of the middleware for robots, which supports
efficient development of robot systems. RT-Middleware aims
at the spread of an open robot system architecture to contribute
to robot market activation.

Buisiness model of robot market: Until now, only some
makers with the synthetic technical capabilities of hardware
and software have been able to participate in the robot market.
If a standardized robot system architecture spreads, a maker
with hardware technical capabilities can get into the robot
market as a robot device component vendor. The makers with
technical capabilities of software, can also get into the market
as “a robot system integrator”.

Wide application of RT: RT-Middleware is a robot system
platform. The software platform is an infrastructure to improve
flexibility of robot system integration. Flexibility of system
integration is needed to apply RT to a wide variety of market
needs.

Robotics research tool: A researcher has only to develop
his/her logic or algorithm as a component, and he/she can build
a new system by combining with other available components.
If a researcher want to try some algorithms to specific part of
the system, a researcher has only to replace a related mod-
ule with new one implemented with his/her new algorithm.
Therefore the efficiency of an experiment will improve.

From academic view, robotics research can be shifted to
research of integration technology by robot technology com-
ponentization.

<<PIM>
SDO model

<<mapping>>

<<PIM>>
RTM Specification

RTM for other platformsCurrent status of our project

Proposed in this paper

OpenRTM-aist implementation

realized

unrealized

Extended interface
for OpenRTM-aist

PSM (Platform Specific Model)
level specification

Implementation

PIM (Platform Independent Model)
level specification

Implementation by other vendors

<<use>>

<<implements>>

<<PSM>
RTM

CORBA model

<<PSM>>
RTM

EJB model

<<PSM>>
RTM

SOAP model

<<interface>>
OpenRTM

basic interface

OpenRTM-aist Other RTM

<<interface>>
OpenRTM

ext. interface

Future
standardization

Fig. 2. The RT-Middleware (RTM) standardization process and the relation
between RTM specification and our implementation of OpenRTM-aist.

For the above-mentioned purpose, we defined a set of
interface and its component model of distributed object mid-
dleware for RT functional element. Moreover, an open source
implementation named “OpenRTM-aist” has been developed
for the purpose of obtaining the feedback from many robot
research fields. Figure 2 shows the relation between RTM
(RT-Middleware) specification and our implementation of
OpenRTM-aist.

In this paper, we mention about RT-Middleware interfaces
for the distributed object middleware, a component model and
OpenRTM-aist as an implementation. First, we will make a
discussion about the basic function which is needed in case
an RT functional element is modularized. An outline about
the basic structure of the RT-Component derived from this
discussion will also be mentioned. Next, the architecture of the
core part of the RT-Component will be shown. Moreover, how
to make two or more components cooperate and constitute one
system will be explained. A force control manipulator system
which was implemented using OpenRTM-aist based on these
ideas would be shown, and finally a conclusion is described.

II. MODULARIZATION OF RT ELEMENTS

Only by implementing RT element as a distributed object
simply, a modularization of RT element is unrealizable.

In this section, structural differences in the modularization
of the simple distributed object and the RT functional element
are clarified, and the core architecture design of RT-module is
discussed. We considered what kind of function required for
a modularization of the RT element would be realized in the
framework of distributed object middleware. As one of the
views of a modularization of RT element, “RT-Component”
was proposed. Required functions, a structure and a realization
method based on distributed objects for the RT-Component
were also reviewed.

A. RT specific functions

Granularity of modules: When modularizing an RT ele-
ment, a module of various granularity size can be considered.
Modules of fine granularity level, such as a motor, a sensor,
and a controller. Modules of middle-fine granularity level, such
as a vision system with some image processing algorithms,
a several degrees of freedom manipulator arm and a mobile
robot with some sensors. Modules of rough granularity level,
such as a humanoid robot with legs, arms and vision system,
an intelligent room with distributed sensors and robots. It is
necessary to provide a framework which can choose such
various granularity freely in RT-Middleware.

Active module: Usually, a general distributed object works
as a passive object, which sends back return values to a method
invocation. In this case, an object is modeled as interfaces
that contain operations with input and output parameters and
a return value. An internal activity model of an object is not
considered.

On the other hand, an RT element has its own tasks like real-
time feedback control. Furthermore, it is necessary to collect
required data RT-element itself, or to notify event to other
elements when it happened.

Rrealtime capabilities: Realtime capabilities of module
activity is a indispensable function in RT systems. RT-
Middleware should support realtime capabilities in its software
module as a framework.

Realtime capabilities between modules: RT system re-
quires the high speed communication and close cooperation
with other modules, such as a servo control.

Time management: For example, a servo control has to
be performed under stable periodic real-time task. In order
to make two or more modules cooperate in the real-time
schedule, the time synchronization between modules, which
may be running on distributed host machines, is needed.

Software reuse: Users are unwilling to use the framework
which needs to remake all programs. In order to reuse a lot of
software library created until now, it is necessary to provide
the framework for modularizing the existing software library
easily.

Platform independent middleware: In order to improve
the reusability of software, the middleware has to be modeled
on the platform (in this context, “platform” means operating
systems) independent abstraction level.

Network independent middleware: RT-Middleware has to
support various communication media and its model should
have independent structure from them. If a real-time commu-
nication media is available, modules that depend on realtime
features should use it.

III. RT-COMPONENT ARCHITECTURE

RT-Component is basic functional unit of RT-Middleware
based systems. Figure 3 shows the architecture block diagram
of the RT-Component.

InPort 0 OutPort 0

CORBA object

Thread

OutPort n

command reply

reply

reply

reply

push

get

get

put

get, subscribe

RTComponent

InPort n

Activity

put

put

Fig. 3. A proposed architecture of RT-Component. RT-Component has a
component object, command interfaces, an activity, InPorts and OutPorts.

A. RT-Component object model

For the above-mentioned reason of platform independency,
we chose CORBA (Common Object Request Broaker Archi-
tecture) as distributed object middleware, and tried modeling
of the RT-Component on CORBA.

An RT-Component consists of the following objects and
interfaces.

• Component object.
• Activity.
• InPort as input port object.
• OutPort as output port object.
• Command interfaces.

The general distributed object model can be described as
some interfaces that contain operations with parameters and
a return value. On the other hand, the RT-Component model
has a component object as a main body, activity as a main
process unit, input ports (InPort) and output ports (OutPort)
as data stream ports.

B. Activity and state transition

An RT-Component itself has an activity which always
continues processing its tasks, and activity serves as a subject
of a device control, such as a robot.

The activity of RT-Component has eleven states: BORN,
INITIALIZE, READY, STARTING, ACTIVE,
STOPPING, ABORTING, ERROR, EXITING,
FATALERROR, UNKNOWN. Figure 4 shows the state
transition chart (UML state chart) of RT-Component’s
activity.

According to the UML notation, RT-Component’s method
names, which are invoked from clients, are described in each
state block. The meaning of method prefixes is the following.

• entry: An atomic action performed on entry to the state.
• do: An action performed while being in the state.
• exit: An atomic action performed on exit from the state.
The states of having only a “entry” method are transient

states which change to the next state immediately. The states
of having “do” method are steady states which can stay at
the state. The states and state transition of the component

Active

entry/ rtc_active_entry

exit/rtc_active_exit
do/ rtc_active_do

rtc_reset

rt
c
_
k
il
l

rtc
_
s
to
p

end

success

Exiting

entry/
rtc_exiting_entry

success

Ready

start

FatalError

Unknown

Starting

entry/
rtc_starting_entry

Stopping

entry/
rtc_stopping_entry

Error

entry/ rtc_erro_enter
do/ rtc_error
exit/ rtc_error_exit

Initialize

entry/
rtc_init_entry

Born

rt
c
_
s
ta
rt

rtc
_
re
s
e
t

rtc_exit

error

error

error

rtc_exit

success

success

success

Aborting

entry/
rtc_aborting_entry

entry/ rtc_ready_entry

exit/rtc_ready_exit
do/ rtc_ready_do entry/ rtc_fatal_entry

do/ rtc_fatal_do
exit/ rtc_fatal_exit

Fig. 4. RT-Component statechart diagram.

was defined so that various type of RT-Components could
be treated as common software parts. By giving a common
state transition to RT-Components, and specifying the mean-
ing of states, it is possible to control the action of many
components similarly. A component developer has only to
map his/her algorithm’s process or library’s process into each
RT-Components state, and just insert his/her code to the RT-
Component framework.

C. InPort/OutPort

In the low level real-time control layer, if a component is
considered as the functional unit which consists of inputs,
processing, and outputs so that it may be exactly expressed

with a control block diagram, it will be easy to perform a
system configuration.

This input/output model is not so suitable for general usage
of the distributed object model. Because an object which sends
its data to other objects has to know all objects’ complete
interface definition. On the other hand, in such low level con-
trol layer, data type, number of data and unit of data are more
important than interface definition. RT-Component adopted the
publisher/subscriber model and defines it as InPort/OutPort.

1) InPort object: An input port of RT-Component. An
InPort receives data from an OutPort that calls method of
“InPort::put()”. This is basic function of the InPort.

Other functional InPorts, that raise a signal or invoke a
callback method etc., can be implemented as subclasses of
the InPort.

2) OutPort object: An output port of RT-Component. An
OutPort sends data to InPorts that “subscribes” this OutPort,
calling “InPort::put()” as “push” type data exchange. “pull”
type data exchange calling “OutPort::get()” method is also
supported.

OutPort supports some subscription type, “New”, “Once”,
“Periodic”, “Periodic New”, “New Periodic”, “Triggered”,
“Triggered Priodic”, “Periodic Triggered”.

For example, the ”New” subscription type means that an
OutPort sends data to InPorts which subscribe it when a new
data come from the activity. Due to insufficient space, the
details of all subscription type cannot be described. Other
subscription type can also be defined if user needs.

put()
:

InPort

get()
subscribe()
unsubscribe()

:

0..* 0..*

OutPort

RTComponent

rtc_start()
rtc_stop()
rtc_reset()
rtc_exit()
rtc_kill()

:

Fig. 5. UML Object Diagram of RT-Component, InPort and OutPort.

As shown in UML Object Diagram of Figure 5, the relation
between RT-Component object and InPort/OutPort objects is
the composition. An RT-Component object manages object
creation and destruction of InPort and OutPort. Other ob-
ject or software can ask the RT-Component what kind of
InPort/OutPort it has.

D. Composite component

On the RT-Middleware, various granularity RT-Components
will be provided by component developer. In this case, such
a composite structure or a nested structure are useful for
hierarchical robot system integration. To realize the com-
posite structure, the composite pattern is applied to the RT-
Component object structure.

The composite components are roughly divided into “the
asynchronous composite component” and “the synchronous
composite component”. The composite components have the
following features,

• A composite component can include components to man-
age them.

• Internal components’ InPorts/OutPorts are delegated to
the composite component.

• A composite component manages activity states of intert-
nal components.

Moreover, the synchronous composite component has the
following features,

• Activity states of internal components are completely
synchronized.

• Activities of internal components are performed serially
in preconfigured order.

• If a thread that invokes each internal component’s activity
is running in real-time mode, and the response time
boundary of method invocation is given and is finite,
internal components can be a real-time control task.

The synchronous composite component architecture is utilized
to realize real-time composite components [9]. Due to insuf-
ficient space, the details of real-time composite component
cannot be described.

The basic asynchronous composite component has the fol-
lowing features,

• States of an internal components do not necessarily have
a synchronization.

• Activities of internal components are performed in par-
allel.

Some types of the asynchronous composite component are
possible by the state transition handling type between internal
components and the composite component.

IV. SYSTEM INTEGRATION USING RT-COMPONENTS

The composite components are one of the low level compo-
nent integration method. For higher level such as application
layer, there are some integration methods provided in RT-
Middleware shown in Figure 6.

RTComponent A

RTComponent B

RTComponent C

XML includes
assembly info.

Assembly GUI
Other

RTComponents

Other App.
Programs

Scripts Language
(Python, etc...)

Fig. 6. RT-Component system integration methods.

The following methods are available.
• Assembly GUI tool
• Script language
• XML file

• Other RT-Components
• Other application program

A. Assemble using GUI

“rtc-link” is a GUI tool that manages a connection
of InPort/OutPort between RT-Components like a control-
block diagram and performs activation/deactivation of an RT-
Component (Figure 7). “rtc-link” is the powerful tool which
can be used in case development of RT-Component and debug-
ging are performed. Moreover, it can use also in verification
and an experiment of a robot system, performing the low level
integration of components.

Fig. 7. GUI tool: “rtc-link”. The rtc-link is a graphical user interface for
RT-Components manipulation.

The Connection information among RT-Components can be
saved as XML file. RT-Components connection can be also
rebuilt from a saved XML file.

B. Script language

RT-Components are able to be controlled from script
language. Now Python language is available in our RT-
Middleware implementation. Script languages are useful for
rapid prototyping. High level programming language is suit-
able for high level system integration programming.

C. Others

An RT-Component is a distributed object (in our case it
is CORBA object). Usual CORBA based system application
program can control RT-Components as CORBA objects.

V. OUR IMPLEMENTATION AND A EXPERIMENT

A. OpenRTM-aist

“OpenRTM-aist” is prototype implementation based on RT-
Middleware interface specification and RT-Component object
model. “OpenRTM-aist” consists of an RT-Component devel-
opment frame work, a manager and some set of tools.

1) RT-Component frame work: RT-Component frame work
provides a managed state transition and InPort/OutPort man-
agement as frozen spots. A component developer inherits the
base class of the RT-Component, and can create his new
component class. The state transition logic is implemented in
the base class, and a developer only needs to map process to
be executed in each state by the specific method override.

2) RT-Component manager: RT-Component manager man-
ages a life cycle of an RT-Component and provide access to
CORBA naming service. RT-Component can exist as a load-
able module. The loadable module is loaded by a component
manager and an instance of an RT-Component is created by the
manager. A manager also activates a component as a CORBA
object and binds it to a name server. Clients can obtain RT-
Component object references from the name server.

3) RT-Component template generator: OpenRTM-aist pro-
vides a template source code generator for RT-Component
development. The template generator creates C++ and Python
source code from given component profiles and InPort/OutPort
profiles. (Here, “template” is not C++ template metaprogram-
ming.) C++ source code includes a header file, component
source, executable component source code, Makefile and
specification file of the RT-Component. A standalone RT-
Component executable and a loadable RT-Component module
are created from these files.

B. Experiment

We applied RT-Component to a force controlled manipulator
systems.

At first, the following RT-Components were developed.
• Force/torque sensor on endeffector (Nitta, IFS).
• PA10 manipulator component (Mitsubishi HI, PA10).
• HRP2 arm component (Kawada/AIST, Humanoid HRP2

Promet).
• Joystick using force/torque sensor (Nitta, IFS).
• GUI slider gain tuning tool.
• Dumper controller component.
Figure 8 shows experimental setup composed of a manipu-

lator (PA10 and HRP2 arm), a force/torque sensor, a joystick,
a controller and a GUI slider component.

Joystick

HRP2Arm

Slider for gain tuning

Controller
PA10

Force [N] (x3)
Moment[Nm] (x3)

Force [N] (x3)
Moment[Nm] (x3)

Velocity [m/s] (x3)
Ang. Velocity[rad/s] (x3)

Gain [mm/s/N] (x3)
Gain [rad/s/Nm] (x3)

Fig. 8. Manipulator system equipment: Manipulators, an end-effector
force/torque sensor, a joystick, a controller and a GUI slider.

1) System I: System I is a basic force controlled manip-
ulator system. A manipulator (PA10) component, an end-
effector force/torque sensor component, a joystick component,
a controller component and a slider gain tuning component
are used. All the components were executed in a same PC
(Pentium4, 2.8GHz).

Velocity of the manipulator’s end-effector is given by the
controller. The controller output is calculated from the follow-
ing control low.

vref = K(fref − fext) (1)

Here, fref is reference force/torque, which should be generated
on the manipulator’s end-effector. fext is external force which
is applied to the manipulator’s end-effector. fref is given by
the joystick component which is applied force/torque to the
joystick. fext is given by the end-effector force/torque sensor.
K is dumper gain given by the slider gain tuning component.

In the experiment, when force was applied to the end-
effector’s force/torque sensor, it was confirmed that an end-
effector moves in the same direction of force. When force was
applied to the joystick, the end-effector moved. It stops when
the end-effector touched something and the applied force to
the joystick, and the contact force between the end-effector
and the contact object, were balanced.

2) System II: Next, a HRP2’s arm component was devel-
oped and replaced with PA10 arm component in the System I
as shown in Figure 8.

Since the HRP2 arm component InPort was designed by
the same specification as PA10 arm component, the PA10 arm
component can be replaced with the HRP2 arm component
easily. Although the joystick and the HRP2 are separated
physically, the HRP2 arm can be also controlled from joystick
because of distributed middleware.

In the experiment, when force was applied to the joystick,
it was confirmed that the HRP2 arm moves. Only developing
a new arm component with same specification, a new force
controled arm system can be developed. Here, other com-
ponents, which are the joystick, the slider and the controller
components, except arm component can be used without any
changes in the new system.

3) System III: Next, the controller’s output is connected
to the PA10 arm component and the HRP2 arm component
simultaneously. In this case, the PA10 is controlled same as
System I. Since the controller output of end-effector velocity is
connected to HRP2 arm component simultaneously, two arms’
end-effectors move with same velocity. The PA10 manipulator
acts as a master manipulator of the HRP2 arm. Only using
component used in System I and System II, a simple tele-
operation system was composed without developing any new
components.

The point is that these four devices components and two
software components are not a monolithic program but pro-
grams completely created separately. Since RT-Middleware is
constructed on distributed object middleware, each component
can be easily distributed on network. RT-Components which
have same InPort/OutPort specification can be replaced easily.
Moreover, a new system can be composed only developing
some new components and using other components which are
already developed.

VI. CONCLUSION

In this paper, we proposed RT-Middleware as a software
platform for robot system integration. About the basic func-
tions needed in case RT functional element is modularized

were discussed. RT-Middleware interfaces for the distributed
object middleware, a component model and OpenRTM-aist as
an implementation were introduced.

Simple manipulator system was constructed using RT-
Components and the RT-Component usability was evaluated.
It was shown that the reusability of software and the flexibility
of integration can be improved if RT-Component is used.
Moreover, since it becomes possible to handle the existing
component as a black box and to combine it, a complicated
system can be constructed easily.

In this paper, we focused on general features of RT-
Middleware and RT-Component. Therefore, other features and
details were not discussed. These are discussed on other papers
[9], [10].

Robot specific features, for example coordinate system
handling, unit definition and conversion of data and so on are
not clearly mentioned in RTM specification and OpenRTM-
aist currently. However these features are indispensable for
RT-Middleware. In the future work, Some of them will be
realized as services, and others will be imported into the RTM
specification.

ACKNOWLEDGEMENT

This work, supported by NEDO (New Energy and Industrial
Technology Development Organization), was performed in the
Joint Research Projects: “Development of Core Technology
needed for Creation of Robotic Fanctions” with Matsushita
Electric Works Ltd. and JARA (Japan Robot Association).

REFERENCES

[1] M.Mizukawa, H.Matsuka, T.Koyama, T.Inukai, A.Noda, H.Tezuka,
Y.Noguchi, N.Otera, “ORiN Open robot Interface for the Network – The
Standard Network Interface for Industrial robots and its Applications –”,
ISR2002, No.45

[2] Makoto Mizukawa, Hideo Matsuka’ Toshihiko Koyama, Toshihiro
Inukai, Akio Noda, Hirohisa Tezuka, Yasuhiko Noguchi, Nobuyuki
Otera, “ORiN: Open Robot Interface for the Network – The Standard
and Unified Network Interface for Industrial Robot Applications –”,
SICE Annual Conference 2002, pp.1160-1163, Osaka

[3] Orocos: Open Robot Control Software. http://www.orocos.org
[4] C. Schlegel, R. Worz, “The Software Framework SmartSoft for Im-

plementing Sensorimotor Systems”, IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS ’99, pp.1610-1616, Kyongju,
Korea, October ’99

[5] Fumio OZAKI, ”Open Robot Controller Architecture (ORCA)”,
IROS2004 Workshop on Robot Middleware toward Standards,

[6] Fumio OZAKI, “Open robot controller archtecture (ORCA)”, AIM2003
Workshop: Middleware Technology for Open Robot Architecture

[7] Kohtaro SABE, “Open-R : An Open Architecture for Robot Entertain-
ment” , AIM2003 Workshop: Middleware Technology for Open Robot
Architecture

[8] Masahiko NARITA, ”RoboLink Protocol - A Robot Collaboration
Protocol based on Web Services - ” IROS2004 Workshop on Robot
Middleware toward Standards

[9] Noriaki Ando, Takashi Suehiro, Kousei Kitagaki, Tetsuo Kotoku
and Woo-Keun Yoon, “Composite Component Framework for RT-
Middleware (Robot Technology Middleware)”, IEEE/ASME Interna-
tional Conference on Advanced Intelligent Mechatronics(AIM), 2005

[10] Noriaki Ando, Takashi Suehiro, Kousei Kitagaki, Tetsuo Kotoku and
Woo-Keun Yoon, “RT-Middleware: Distributed Component Middleware
for RT (Robot Technology)”, IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2005

	MAIN MENU
	PREVIOUS MENU

	Search DVD-ROM
	Search Results
	Print

	01: 3555
	footer: 0-7803-8912-3/05/$20.00 ©2005 IEEE.
	header: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems
	02: 3556
	03: 3557
	04: 3558
	05: 3559
	06: 3560

