
A Software Platform for Component Based
RT-System Development: OpenRTM-Aist

Noriaki Ando, Takashi Suehiro, and Tetsuo Kotoku

Intelligent Systems Research Institute,
National Institute of Advanced Industrial Science and Technology (AIST),

AIST Tsukuba Central 2, Tsukuba, Ibaraki 305-8568, Japan
{n-ando,t.suehiro,t.kotoku}@aist.go.jp,

http://www.openrtm.org/

Abstract. This paper proposes the RT-Middleware for robot system
integration. “RT” means “Robot Technology” which is applied not only
to industrial field but also to nonindustrial field such as human daily
life support systems. We have studied modularization of RT elements
and have developed software platform RT-Middleware which promotes
application of RT in various field. Robotic system development method-
ology and our RT-Middleware concepts is discussed. The RT-Component
which is a basic madular unit of RT-Middleware based system integration
is derived from this discussion. A methodology of system development
with RT-Components, and a framework to make component are shown.

1 Introduction

The progress of robotics research has accumulated vast amounts of knowledge
and technology. Those technologies called “Robotic Technology (RT) [1]” have
begun to be applied to various field including ubiquitous computing, intelligent
room and service robot applications. However the applications of those tech-
nologies are not developed enough, and the system integration issues for those
technologies are receiving increasing attention both by academia and industrial
circles. Especially software takes the lead in robotic system integration method-
ology. As the supportive evidence of it, many software platforms for robots have
been developed in the world in recent years.

We have studied software building block architecture for robot development,
and the RT-Middleware (RTM) and RT-Component (RTC) has been proposed as
the one of solution about it [2]. The purpose of the RT-Middleware is to establish
basic technologies for integrating robot systems with a new function easily by
using modularized software components named RT-Component. If robot systems
with new functions can be constructed more flexibly, it can satisfy every users’
needs individually which cannot be satisfied now. Thus, it is expected that the
conventional robot industry mainly restricted to the manufacturing field will be
expanded to the nonmanufacturing field like support robots for daily life.

The research on software platforms and libraries for robotic systems are per-
formed actively in recent years. “Player/Stage” is a free software project for

S. Carpin et al. (Eds.): SIMPAR 2008, LNAI 5325, pp. 83–94, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

84 N. Ando, T. Suehiro, and T. Kotoku

research in robot and sensor systems. The Player, which is a robot server with
robot control interface, and its simulation backends, Stage and Gazebo, are very
widely used especially by mobile robotics researchers [3]. “ORCA” is an open-
source framework for developing component-based robotic systems. It provides
the means for defining and developing the software components as the building-
blocks [4]. “CLARAty” (Coupled-Layer Architecture for Robotic Autonomy) is
an integrated framework for reusable robotic software developed by JPL, Uni-
versity of Minesota and Carnegine Mellon University [5]. It defines interfaces for
common robotic functionality and integrates multiple implementations of any
given functionality. “MSRDS” (Microsoft Robotics Developer Studio) is soft-
ware platform for robotics that is distributed by Microsoft. This platform is
based on DSSP (Decentralized Software Services Protocol) that is SOAP based
application protocol for lightweight services. This platform also provides Visual
Programming Language (VPL) for robot developers.

The main differences between those software platforms and our RT-
Middleware are characterized by the open specification and interoperability.
The RT-Component, which is managed its lifecycle by the RT-Middleware, is
a software component based on the open specification. Since the specification
is opened, any software vendors can implement based on it, and because of the
common specification, different implementation can be interoperable. We also
have implemented RT-Middleware and RT-Component framework based on the
specification, and the implementation named “OpenRTM-aist” is provided as an
open source reference implementation.

In the following, first, the requirement of the software platform for com-
ponent based RT-system development is discussed, and the basic concept of
RT-Middleware is shown. Then, on the basis of the discussion, a component
model of RT-Component is shown. Based on the proposed component model, the
RT-Middleware and RT-Component framework is implemented. Finally, some
RT-Middleware based systems are shown and the discussion and conclusion are
given.

2 What is Needed for RT Software Platform

In this section, the core architecture of the RT-Componet is discussed. In consid-
eration of RT-specific features for software, the requirement for the component
model for RT systems is clarified.

2.1 Code Reusability

The reusability has two meanings. One is reusability of user’s code, the other
is reusability of components. Users are unwilling to use the component frame-
work which needs to remake all codes. In order to reuse a lot of software library
developed until now, it is necessary to provide the framework for modularizing
the existing software library easily. Therefore, framework needs to support var-
ious operating systems and various programming languages. After modularized

A Software Platform for Component Based RT-System Development 85

as an component, the component should be used without any modification and
re-compile of codes.

OpenRTM-aist provides a component framework and template code genera-
tor. User can easily embed their code in it and can make it reusable component.
Since component framework provides various functionality such as lifecycle man-
agement, network communication including data-oriented and service-oriented
interaction and runtime configuration, user can focus on his/her own main logic.

2.2 Various Granularity Support

Various granularity size of modules could be considered, when modularizing an
RT element. A motor, a sensor, and a controller can be a fine granularity com-
ponent respectivly. A vision system with some image processing algorithms, a
several degrees of freedom manipulator arm and a mobile robot with some sen-
sors are example of middle-fine granularity components. An application program
might want to handle a humanoid robot, an intelligent room, etc. as a coarse
grained module respectivly. The software platform needs to support various com-
ponent grain size in the framework.

OpenRTM-aist’s component model provides data-centric interaction method,
which is mainly used for fine grained components, and service-oriented interac-
tion method, which is mainly used for coarse grained components.

2.3 Active Module

Usually, a general distributed object works as a passive object that sends back
return values to a method invocation. In this case, an object is modeled as
interfaces that contain operations with input and output parameters and a return
value. An internal activity model of an object is not considered.

On the other hand, some of modularized RT element has its own tasks like
real-time feedback control in it, and it is necessary to collect required data RT-
element itself, or to notify event to other elements when it happened.

In the RT-Component model, a component’s business logic is associated with
at least one execution entity named Execution Contexts. The Execution Context,
which is a logical thread, executes user’s logic implemented in the RT-Component
framework.

2.4 Realtime Capabilities

Realtime capabilities of module activity are an indispensable function in RT
systems especially in low level control layer. It is necessary not only in one com-
ponent but also in composite component that is composed of some fine-grained
components. For example, in order to make two or more modules cooperate in
the real-time schedule, the time synchronization between modules is needed.
Software platform for RT systems should satisfy these requirements.

Above mentioned Execution Context, which is a logical thread, is associated
with RT-Component in run-time. Replacing by a execution context driven by a
real-time thread, real-time execution of the RT-Component’s can be possible.

86 N. Ando, T. Suehiro, and T. Kotoku

2.5 Platform Independency

Here the platform contains some meanings such as operating systems, program-
ming language, network middleware and communication media. As mentioned
above, it is significant that platform supports multiple operating systems and
languages for code reusability. Generally as for the code of a low level which
controls hardware, C and C++ language are used, and a code of a high level,
such as behavior and judgment of a robot will often be described by Java or
script languages. In many cases, device drivers for robotic devices support a few
operating systems and needs special communication media. Since a device and
its device driver often depend on operating systems and communication media,
the framework for modularizing it should not be dependent on them.

Currently OpenRTM-aist supports C++, Java, Python and C# languages on
various UNIX, Mac OS X and Windows platforms. OpenRTM-aist’s interoper-
ability among these languages and OSs is realized by CORBA (Common Object
Request Broker Architecture).

2.6 Social Requirement

The software platform has to be stable in the meaning of the quality of software
code itself and the social continuity of the software. Needless to say that the
code quality of the software platform is important. Additionally since many
software components that are developed on the platform depend on the platform,
continual existence of the platform is also important issue. The open source and
copyleft strategy can be one of solution for it, and the open specification is the
other solution.

OpenRTM-aist is an open source project, and it is released under LGPL
license. We also opened its specification including component model and interface
definition. Currently we released C++, Java and Python version of OpenRTM,
and one private company released OpenRTM for C#, which is compatible with
our OpenRTM-aist for C++, Java and Python. Multi-vendor environment gives
the software platform diversity, optionality and continuousness. Additionally the
specification itself has to be stable, so we have standardized the RT-Component
specification in OMG (Object Management Group) [6].

3 Component Model

From the requirements mentioned above, we had studied about appropriate com-
ponent model for RT-systems, and had defined the functionality in the compo-
nent model. We call it RT-Component (RTC). Figure 1 shows the architecture
block diagram of the RT-Component. The functionality of the RT-Component
is as follows:

– Component metadata for dynamic component assembly.
– Component action and execution context for business logic execution.
– Data ports for data exchange between RTCs.

A Software Platform for Component Based RT-System Development 87

Activity

RTComponent

RTComponent Service

Configuration
interface RTC Interfaces RTCEx Interfaces

OutPortInPort

RTCS Consumer

InPort 0

InPort n OutPort n

OutPort0

Service

Service

reply

push
put

get, subscribe

Buffer Buffer

BufferBuffer

Consumer

Proxy

Consumer

Proxy

reply

get
put

use provideprovide

State Machine

Fig. 1. The proposed architecture of RT-Component model. The RT-Component has a
component body, common interface for metadata acquisition, component action, data
ports, service ports and configuration interface.

– Service ports for service-oriented communication between RTCs.
– Configuration interface for runtime parameter setting.

3.1 Metadata Acquisition

The metadata acquisition capability, which realize querying and administer-
ing RTCs at runtime, is also known as “Introspection” (Figure 2). RTC has
some interfaces to get metadata including profile, properties about ports. These
capabilities can be used by other RTCs, tools or other application programs
that support dynamic RTC composition. By using these metadata, applica-
tion programs can obtain these metadata from RTC in runtime, and can make
dynamic composition of RTCs in runtime. These metadata is also useful for
components debugging tools and components composition tools. This function-
ality has two features, one is resource data model, the other is stereotype and
interfaces. Resource data, which is a kind of data-only class, describes com-
ponent profiles. Interfaces defines some methods to get or set profiles and
properties.

port0

port1

A

B
C

D

E

port2

port3

port4

parameter name
value

ExecutionContext

port5

port6

port7

Fig. 2. The RTC provides introspection interfaces to obtain metadata of the RTC.
Other RTC or application can utilize the metadata to make dynamic RTC composition.

88 N. Ando, T. Suehiro, and T. Kotoku

Error

ExecutionContext::activate_component

ExecutionContext::deactivate_component

[ReturnCode_t!=OK]/ ComponentAction::on_aborting

[ReturnCode_t!=OK]

[ReturnCode_t=OK]

ExecutionContext::reset_component

do/ComponentAction::on_error

Active
entry/ComponentAction::on_activate
exit/ComponentAction::on_deactivate

Resetting

entry/ComponentAction::on_error

Steady Error

Inactive

Fig. 3. The state machine of the Execution-
Context. Each callback named “on xxx” is in-
voked on related transition events and actions.

Device
Initialization

Servo
Off

Servo
On

Emergency
Stop

Error

ActiveInactive

Execution Context

Init RTC

An Example of Arm Component

Fig. 4. The Component Action call-
backs in which the component specific
logic is implemented are invoked by
the logical thread ExecutionContext

3.2 Component Action

The “Component Action” interface defines callbacks corresponding to the exe-
cution of the lifecycle operations of RTC. These callbacks would be invoked by
the execution entity named “Execution Contexts” that is a logical thread object.

An RTC developer would implement Component Action’s callback operations
that would be invoked in each state of “Execution Context”, in order to execute
RT-component-specific logic. An RTC can participate in Execution Contexts,
and an Execution Context can accept multiple RTC participants. As shown in
Figure 3 and 4, an Execution Context performs a state transition between “Ac-
tive” “Inactive” and “Error” state, and Component Action callbacks is invoked
in appropriate timing in the state transition.

As mentioned above, the logic of an RTC and the logical thread is decoupled
in the RTC model. This model is useful to implement tightly coupled RTCs in a
single (real-time) thread. It is called the synchronous composite RT-Component.

3.3 Data Ports

In the low level real-time control layer, if a component is considered as the
functional unit which consists of inputs, processing, and outputs like a control
block diagram, it will be easy to perform a system configuration (Figure 5). This
input/output model is not suitable for general usage of the distributed object
model. Because an object which sends its data to other objects has to know
all objects’ complete interface definition. On the other hand, in such low level
control layer, data type, number of data and unit of data are more important
than interface definition. As shown in Figure 6, RT-Component adopted the
publisher/subscriber model and defines it as InPort/OutPort.

OutPort supports some subscription types, “New”, “Periodic” and “Flush.”
For example, the ”New” subscription type means that an OutPort sends data
to InPorts which subscribe it when a new data come from the Component
Action.

A Software Platform for Component Based RT-System Development 89

Data Flow
Data Port

Position
data

Torque
data

Kp

TDS

1
TIS

Reference
Position

Actuator
RTC

Controller
RTC

Sensor
RTC

Fig. 5. A DataPort usage example.
The DataPort is used for data-
centric communication between
components.

Component A

Generated Data Data from Comp.A

BufferBuffer

DataPorts

ExecutionContext ExecutionContext

Component B

Fig. 6. The DataPort provides data-centric port
for RTCs. The InPort receives data from the
OutPort. The OutPort has some subscription
types that control data pushing timing.

3.4 Service Ports

The software component should have enough interfaces to access to detailed func-
tionality of the component from outside (Figure 7). The “Service Ports” provide
endpoint to attach provided interfaces and required interfaces on it. Component
developer can provide his/her own defined interface through the Service Port.
The developer also can use provided interfaces by the other components through
the Service Ports, as shown in Figure 8.

3.5 Configuration

The Configuration interface provides interfaces to administrate user defined
RTC’s parameters. As mentioned above, a component should not have the hard-
coded configuration parameters which prevent reuse of the component.

The configuration consists of some configuration parameters as list of values
with name, as shown in Figure 9. RTC is able to have some configurations as sets.
This is called the Configuration Set. The Configuration Sets can be replaced in

Manipulator

Data Port
Position

data

Arm Interface Service Port
- Mode setting
- Coordinate setting
- Ctrl parameter setting
- Jacobian get/set
- Status acquisition
- etc.

Manipulator
RTC

Fig. 7. AServicePort usage example.The
ServicePort is used for service-oriented
communication between components.

Service Port
with Consumer

Service Port
with Provider

Component A

Operation invocation

Service
Proxy

ServicePorts

ExecutionContext
Service

Implementation

Actual processing
are performed here

Component B

Fig. 8. The ServicePort provides service-
oriented communication between RTCs.
User defined service objects can be ex-
ported through the ServicePort.

90 N. Ando, T. Suehiro, and T. Kotoku

name
ModeA

ModeB

ModeC

name

name

Kp

Kp

Kp

Ki

Ki

Ki

Kd

Kd

Kd

max

max

max

min

min

min

0.6

0.8

0.3

0.01

0.0

0.1

0.4

0.01

0.31

5.0

10.0

1.0

-5.0

-10.0

-1.0

value

value

value

Kp

Kds

Ki
s

Limiter

PID Controller RTC

PID gain and limiter parameter
can be switched according to

a target plants or modes in runtime.

Select and Set

PID Controller

ConfigurationSet

ConfigurationSet name

Configuration parameters

Fig. 9. The Configuration interface allows manipulation of configuration parameters
in runtime. User can define some sets of the configurations.

runtime to adapt the RTC into the applications. For example, if an RTC realises
PID controller with P-I-D gain as configuration parameters, the configuration
set can be replaced or changed to adapt to the plant.

4 Implementation

4.1 OpenRTM-aist

According to the proposed RTC model, the “OpenRTM-aist (Open RT-
Middleware distributed by AIST)” that is a component framework and mid-
dleware environment for RTCs have been implemented [7]. “OpenRTM-aist”
consists of an RT-Component development frame work, a middleware including
RTC manager and some tools. OpenRTM-aist is implemented on CORBA (Com-
mon Object Request Broker Architecture), because of its network transparency,
OS/language independency and interoperability. Currently OpenRTM-aist sup-
ports C++, Java and Python languages on Windows, Linux and other UNIX-like
operating systems. An RTC developer can choose appropriate language accord-
ing to granularity, logic abstraction level and preference of language, and RTCs
implemented on different languages are interoperable each other. OpenRTM-
aist is also CORBA independent implementation, so it supports some CORBA
implementation like omniORB, TAO, MICO and ORBexpress.

“OpenRTM-aist” provides a GUI tool to manage and administrate RTC on
the network. The Figure 10 is the tool named “RtcLink.”

The left side pane is “Name Service View” that show component list on the
specific name server. The center pane is “System Editor” that is editor area to
compose RTCs connection and to activate/deactivate RTCs. The right side pane
is “Property View” to show the selected RTC’s profile.

This GUI tool is implemented as an Eclipse plug-in. The Eclipse is a open-
source project, and a lot of third party plug-ins is available. Since the Eclipse is
one of the most widely used integrated development environment now, we have
chosen the Eclipse as a platform of our tools.

A Software Platform for Component Based RT-System Development 91

Fig. 10. RtcLink on Eclipse. RT-System online design tool running on Eclipse IDE.

4.2 RTM Based Systems

OpenRTM-aist already has more than 100 users, and some of national robotic
projects in Japan adopts it as official platform. Here some of RTM based systems
are shown.

Force Controled Manipulator. This is an example system, which consists of
a force sensor RTC, a manipulator RTC, a joystick RTC and a dumper controller
RTC, to show real-time capability of OpenRTM-aist.

As shown in Figure 12, these components are associated with same real-time
thread, and each component’s logic are executed synchronously in a 2 ms periodic
task. Table 1 shows task execution time statistics in this experiment. The point
is that these three devices components and one control component are not a

Joystick

End-effector
force/torque sensor

Manipulator

Fig. 11. Manipulator system equip-
ment: End-effector force/torque sen-
sor, manipulator, joystick

End-effector force sensor

Joystick

Manipulator

Controller
(Damping control)

Real-time loop

A Synchronous Composite Component

Force/Torque
(TimedFloatSeq type)

End-effector velocity
(TimedFloatSeq type

Force/Torque
(TimedFloatSeq type)

2

3
4

1

Fig. 12. A force controlled manipulator sys-
tem using a synchronous composite compo-
nent. Number in upper left of each block means
execution order.

92 N. Ando, T. Suehiro, and T. Kotoku

Table 1. Execution time of force controlled manipulator system

Task period time 2.00 ms

Maximum execution time 2.01 ms

Minimum execution time 1.99 ms

Mean execution time 2.00 ms

Standard deviation 4.41 µs

monolithic program but programs completely created separately. Furthermore,
the point that these components were executed synchronizing in real-time is
important.

Automatic LRF Calibration System. Sasaki et al. implemented their dis-
tributed LRF (laser range finder) automatic calibration algorithm on OpenRTM-
aist [8](Figure 14).

This system consists of four type of RTC: LRF RTC, Tracker RTC, LRF Cali-
bration RTC, Coordination Transform RTC. LRF sensors distributed on network
are integrated by the network transparency capability of OpenRTM-aist.

Other RTCs. The following is an example of the components developed on
OpenRTM-aist by OpenRTM-aist community.

– 3D recoginition and tracking RTCs by AIST and Applied Vision Co.
Ltd.(Figure 15)

– Learning/inference RTCs baed on β-RNA by AdIn Research, Inc.
– LRFbasedhumantrackingRTCsbySystemEngineeringConsultantsCo.,Ltd.
– Manipulator and bilateral tele-operation RTCs by AIST
– Input device RTCs (Game-pad, PHANToM, GUI, etc.) by AIST
– Dynamics simulator: OpenHRP3 by AIST(Figure 16)

Fig. 13. The LRF automatic calibration algo-
rithm. Relative.

Fig. 14. LRF automatic calibra-
tion and tracking system based on
OpenRTM-aist

A Software Platform for Component Based RT-System Development 93

Fig. 15. 3D recognition and tracking RTCs. This system is based on VVV (Versatile
Volumetric Vision) developed in AIST.

Fig. 16. The OpenHRP3 provides an environment for dynamics simulation for vari-
ous types of robots including humanoid robots, manipulators and mobile robots. The
controller RT-Component that is tested in the OpenHRP3 can be exported to the real
robot without recompiling.

Currently a lot of RT-Components are being developed and circulation in a
user community is also starting.

5 Conclusion

In this paper, we proposed component based robotic system integration
scheme RT-Middleware and RT-Component. The functions required for the
RT-Component which supports robot specific features were discussed and
clarified. To realize component based robotic system development efficiently,
RT-Component and its architecture was proposed. The “OpenRTM-aist”,
which includes RTC development framework, middleware and tools, have been
implemented.

94 N. Ando, T. Suehiro, and T. Kotoku

References

1. Japan Robot Association, Summary Report on Technology Strategy for Creating a
Robot Society in the 21st Century (2001),
http://www.jara.jp/e/dl/report0105.pdf

2. Ando, N., Suehiro, T., Kitagaki, K., Kotoku, T., Yoon, W.-K.: RT-Middleware:
Distributed Component Middleware for RT (Robot Technology). In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2005), pp. 3555–
3560 (2005)

3. Gerkey, B.P., Vaughan, R.T., Stoy, K., Howard, A., Sukhatme, G.S., Mataric, M.J.:
Most Valuable Player: A Robot Device Server for Distributed Control. In: Proceed-
ings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2001), pp. 1226–1231 (November 2001)

4. Makarenko, A., Brooks, A., Kaupp, T.: Orca: Components for Robotics. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
2006), Workshop on Robotic Standardization (2006)

5. Volpe, R., Nesnas, I.A.D., Estlin, T., Mutz, D., Petras, R., Das, H.: The CLARAty
Architecture for Robotic Autonomy. In: Proceedings of the 2001 IEEE Aerospace
Conference, Big Sky Montana, March 10-17 (2001)

6. Object Management Group, Robotic Technology Component Specification Version
1.0, formal/2008-04-04 (2008)

7. OpenRTM-aist official web site, http://www.openrtm.org
8. Sasaki, T., Hashimoto, H.: Hierarchical Framework for Implementation of Intelli-

gent Space. In: Proceedings of the 33rd Annual Conference of the IEEE Industrial
Electronics Society (IECON 2007), vol. 11, pp. 28–33 (2007)

http://www.jara.jp/e/dl/report0105.pdf
http://www.openrtm.org

	Introduction
	What is Needed for RT Software Platform
	Code Reusability
	Various Granularity Support
	Active Module
	Realtime Capabilities
	Platform Independency
	Social Requirement

	Component Model
	Metadata Acquisition
	Component Action
	Data Ports
	Service Ports
	Configuration

	Implementation
	OpenRTM-aist
	RTM Based Systems

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

