大域地図コンポーネント群

平成 21 年 7 月 14 日

豊橋技術科学大学 行動知能システム学研究室

1. このコンポーネント群について

このコンポーネントは独自手法の大域地図の生成・表示を行うコンポーネント群である.

- 2. データ蓄積コンポーネント(DataBufferForGmap)
 - 2.1 このコンポーネントについて このコンポーネントは KSLAM 用データ蓄積コンポーネントである.
 - 2.2 開発·動作環境
 - このコンポーネントは以下の環境で開発し、動作確認をしている.
 - Windows XP Pro SP2
 - Open-rtm-aist 0.4.2(C++版)
 - Visual studio 2008

2.3 入出力データポート

ポート名	データ型	入出力	備考
InportRange	SensorRTC::LaserRangeSensor::	入力	距離データ入力
	idl::TimedMeasuredData		
Odometry	RTC::TimedOdometry	入力	ロボットの現在位置

2.4 サービスポート

ポート名	サービス名	タイプ	備考
LRSServicePort	LRSService	provider	センセ制御用
BufferServicePort	BufferService	provider	データ出力用

2.5 サービスポートの定義について

RSService サービスは,株式会社セックが開発した北陽電機社の URG シリーズ 用のコンポーネント用のサービスである(詳しくは,<u>http://www.openrtp.jp/siwiki/</u> を参照).

TUT::BufferService

サービス名	引数	戻り値	備考
getPose	なし	RTC::TimedOdometry	ロボットの位置を取得
getRangeData	なし	SensorRTC::LaserRangeSens	レンジデータの取得
		or::idl::TimedMeasuredData*	
get_vector_length	なし	long	蓄積データ数を取得

2.6 データ型について

SensorRTC:: LaserRangeSensor:: idl::TimedMeasuredData は,株式会社セック が開発した北陽電機社の URG シリーズ用のコンポーネント用のデータ型である (詳しくは,<u>http://www.openrtp.jp/siwiki/</u>を参照).

メンバ名	データ型	備考
tm	RTC::Time	タイムスタンプ
х	double	ロボットの x 座標(m)
У	double	ロボットの y 座標(m)
theta	double	ロボットの姿勢(rad)

- 3. 大域地図生成(KSLAM)
 - 3.1 このコンポーネントについて

このコンポーネントは大域地図作成コンポーネントである.

(地図作成手法の概要は次の論文参照:"局所地図の時系列統合による大域地図の 生成" 北島 健太, 増沢 広朗, 三浦 純, 佐竹 純二 ROBOMEC '09)

3.2 開発·動作環境

このコンポーネントは以下の環境で開発し、動作確認をしている.

- Windows XP Pro SP2
- Open-rtm-aist 0.4.2(C++版)
- Visual studio 2008

3.3 入出力データポート

ポート名	データ型	入出力	備考
GMap	TUT::TimedGMAP_Data	出力	大域地図

3.4 サービスポート

ポート名	サービス名	タイプ	備考
BufferServicePort	BufferService	consumer	データ入力用

- 3.5 サービスポートの定義について TUT::BufferService については 2.3 節を参照してください.
- 3.6 データ型について

TUT::TimedGMAP_Data 型は大域地図のデータを表す. セルの座標はスタート 位置を原点として,図1のように付けられる.

(2,2)	(2,1)	(2,0)	(2,-1)	(2,-2)
(1,2)	(1,1)	(1,0)	(1,-1)	(1,-2)
(0,2)	(0,1)	(0,0)	(0,-1)	(0,-2)
(-1,2)	(-1,1)	(-1,0)	(-1,-1)	(-1,-2)
(-2,2)	(-2,1)	(-2,0)	(-2,-1)	(-2,-2)
(-3,2)	(-3,1)	(-3,0)	(-3,-1)	(-3,-2)

図 1 大域地図のセルの番号付

TUT:: TimedGMAP_Data 型

メンバ名	データ型	備考
tm	RTC::Time	タイムスタンプ
data	TUT:: GMAP_Data	大域地図データ
TUT::G	MAP_Data 型	·
メンバ名	データ型	備考
x_max	long	x 方向の最大セル
x_min	long	x方向の最小セル
y_max	long	y 方向の最大セル
y_min	long	y 方向の最小セル
Grid_size	double	1 セルの1辺の大きさ[mm]
map	sequence <cell_data></cell_data>	大域地図のセルデータ集合
pos	sequence <position></position>	ロボット位置系列
TUT:: cell_data 型		
メンバ名	データ型	備考
x	double	対象セルの x 方向の番号
У	double	対象セルのy方向の番号
Р	double	対象セルの確率
TUT:: position 型		
メンバ名	データ型	備考
x	double	ロボット座標(x 方向)[mm]
У	double	ロボット座標(y 方向)[mm]
theta	double	ロボット姿勢[rad]

SensorRTC:: LaserRangeSensor:: idl::TimedMeasuredData は,株式会社セッ クが開発した北陽電機社の URG シリーズ用のコンポーネント用のデータ型であ る (詳しくは,<u>http://www.openrtp.jp/siwiki/</u>を参照).

- 4. 大域地図表示コンポーネント(KSLAM_Viewer)
 - 4.1 このコンポーネントについて

このコンポーネントは TUT:: TimedGMAP_Data 型の地図を表示するコンポー ネントである. 地図は図 2 のように表示される. 表示するウインドウのサイズは 地図の大きさによって自動的に変化する.

4.2 開発·動作環境

このコンポーネントは以下の環境で開発し、動作確認をしている.

- Windows XP Pro SP2
- Open-rtm-aist 0.4.2(C++版)
- Visual studio 2008
- OpenCv

4.2 入出力データポート

ポート名	データ型	入出力	備考
GMap	TUT::TimedGMAP_Data	入力	大域地図

4.3 データ型について

TUT::TimedGMAP_Data 型については 3.6 節を参照してください.

- 5. 使用方法
 - 5.1 準備

KSLAM_Viewer.comp を使用するためには OpenCV_1.0 をインストールしておく必要がある. インストール方法は以下の通りである.

•OpenCV ライブラリ (配布元: http://sourceforge.net/projects/opencvlibrary/)

[インストール手順]

- 上記サイトなどでOpenCV_1.0.exe,またはOpenCV_1.1pre1a.exeをダウン ロードし、実行
- ② 環境変数Pathに"C:¥Program Files¥OpenCV¥bin"を追加

5.2 起動手順

- ①ファイルを展開する.
 - ファイルの中身は図3のようになっている
 - (ア)IDL ファイル(2種類)

このコンポーネント群の独自のデータ型・サービスを定義した IDL ファイル.

(イ)DataBufferForGMapComp フォルダ

DataBufferForGMapCompの実行ファイル及びrtc.confファイルを含む.

(ウ)KSLAM_ViewerComp フォルダ

KSLAM_ViewerComp の実行ファイル及び rtc.conf ファイルを含む.

(エ)KSLAM フォルダ

KSLAM_ViewerComp の実行ファイル及び rtc.conf ファイルを含む.

図 3 解凍フォルダの中身

②ネームサーバーを起動する.

スタート>すべてのプログラム>OpenRTM-aist>C++>examples >Start Naming Service を選択

③モジュールの起動

①の(イ)~(エ)のフォルダの下にある『DataBufferForGMapComp.exe』,
 『KSLAM_ViewerComp.exe』,『KSLAMComp.exe』を起動する.また,
 DataBufferForGMapCompにデータを入力するコンポーネントを起動する.
 * DataBufferForGMapCompの入力ポートに接続できるコンポーネントなら何でもよい.今回はURGDataFlowComp(北陽電機社製レーザセンサのデータを取得するモジュール)と PeopleBotControllerComp (Mobile Robotics 社ロボット用制御コンポーネント)を使用する.各モジュールの使用方法はモジュールのマニュアルを参照してください.

④RTCLink での操作

(ア)eclipse を起動する.

- (イ)図4の赤い丸で囲んだアイコン『add name server』を選択する.
- (ウ)図4のように Connect Name Serverの Adress Port に『localhost』と入力 して OK を選択する.
- (エ)NameServiceView に③で起動したモジュールがずべて表示されていることを 確認する.
- (オ)ファイル>Open New System Editor を選択する.
- (カ) NameServiceView 上のモジュールを選択して, System Editor 上にドラッグし

てモジュールのアイコンを表示させる.

(キ)図5のようにモジュール同士を接続する.

😂 RTCLink - Eclipse SDK	
ファイル(E) 編集(E) ナビゲート(N) 検索((A) プロジェクト(P) 実行(R) ウィンドウ(W) ヘルプ(H)
📬 • 🔜 🖻 📑 💁 •	🛷 🚾 • ½ • ⅔ • 🏷 ⇔ • ⇔ •
MameServiceView X □ À ↔ ↔ ↔ ↔ ⊕ ⊼T localhost	Connect Name Server ネームサーバのアドレスを入力してください。 localhost (Address:Port) OK キャンセル
図 4	Eclipse の画面

⑤モジュールのアクティベート

モジュールのアクティベートには順番があるため以下の手順に従ってモジュー ルをアクティベートする.

(ア) KSLAMComp 以外のモジュールをアクティベートする.

(イ) KSLAMComp をアクティベートする.

*KSLAM.comp をアクティベートする前に KSLAMComp は BufferServicePort に接続された BufferService のクライアント側のコンポーネントを Activate した 後, Activate する. 図 5 の構成例の場合は KSLAMComp をアクティベートする 前に DataBufferForGMapComp を先に Activate させる必要がある.

DataBufferForGMapComp と KSLAM_ViewerComp にはアクティベートの順番 はない.

⑥動作確認

⑤まで完了した後に、地図ができ始めると図6の左下のようにウインドウが現 れ、大域地図が表示される.

図 6 動作の様子

5.3 使用用途

DataBufferForGMapCompはKSLAM用にデータを蓄積するコンポーネントのため, KSLAMCompと併用して使用することが前提となる.

KSLAM_ViewerComp 表示用のコンポーネントのため, KSLAMComp は KSLAM_ViewerComp と接続しなくても大域地図を生成することができる.

また, KSLAM_ViewerComp は大域地図を表示するだけでなく,大きさが変化するグ リッド形式の地図を表示することに使用することができる.

6. 連絡先について

不明な点がある場合は rtc@aisl.ics.tut.ac.jp まで連絡をお願いします.