

SICE-ICASE International Joint Conference 2006
Oct. 18-21, 2006 in Bexco, Busan, Korea

Development of Light-Weight RT-Component (LwRTC) on Embedded Processor
-Application to Crawler Control Subsystem in the Physical Agent System-

Yutaka TSUCHIYA†, Makoto MIZUKAWA†, Takashi SUEHIRO††
Noriaki ANDO††, Hiroyuki NAKAMOTO†††, Akihiro IKEZOE†††

† Department of Electrical Engineering, Shibaura-I.T., Tokyo, Japan
†† Task Intelligence Research Group in Institute of Intelligent Systems, AIST, Ibaraki, Japan

††† Space Technology and Newer System Business Field, SEC Co., Ltd., Tokyo, Japan

Abstract: Because the RT middleware is only supported by ORBs implemented on PCs, application to a small-scale
system and the small-size robot seems to be difficult. To reduce power consumption and developing distributed
RT-components on micro processors, application of the RT middleware to the embedded processing system and
arbitrary network system are important. In this paper, we report the LwRTC that is the implementation of the
RT-component on embedded micro-processors, and the prototype system for the mobile robot using LwRTC.

Keywords: RT-Middleware, Embedded Computer, Controller Area Network (CAN), Distributed Control System,
Physical Agent System

1. INTRODUCTION
RT-Middleware (RTM)[1][2] is developed as the

middleware for next generation platform of RT systems
in AIST supported by NEDO (New Energy and
Industrial Technology Development Organization).

The robot system which uses the RTM is consist of
distributed object software components called
RT-Component (RTC). The robot system is constructed
as distributed RTCs on the network.

This research purposes implementation method of
RTCs on embedded computer systems to achieve
reusability of program and to introduce decentralized
and embedded processor system into robot controllers
with less power consumption and computing power.

2. PHYSICAL AGENT SYSTEM (PAS)
In the future, robots are expected to spread more

widely in society. At that time, robot must be easy to use
and to be developed. The design and configuration of
robot system, however, depends on its hardware and
software. This makes it difficult to develop various
robot systems to provide services using
independently-designed robot-components.

Physical Agent System (PAS)[3][4] is one of solutions
for this request. PAS is tele-operated and
semi-autonomous robot. It performs tasks as an agent of
a remote operator to support our daily-life.

2.1. PAS Overview
Figure 1 is Outline of PAS. PAS has many devices to

control robot such as a joystick, a voice interpreter,
sensory glove to detect hand pose, and so on. The
commands from those devices are trancemitted to the
agent robot via the Internet using the middleware, ORiN
(Open Robot/Resource Interface for the Network)[5][6].

2.2. Physical Agent Robot (PAR)
The Physical Agent Robot (PAR) is the robot used in

the PAS. Figure2 shows the component-structure of the
PAR. The PAR adopts distributed processor control
system. This robot consists of functional modules called
subsystems that control functional devices (ex. Crawlers,
vision unit, etc) in the PAR. Those subsystems are

Voice Command

Sensory Glove

Input InterfaceInput Interface

3D Simulator

Intelligence
Sharing Pad

Joystick

Voice Command

Sensory Glove

Input InterfaceInput Interface

3D Simulator

Intelligence
Sharing Pad

Joystick

PCPC
Physical Agent SystemPPhysical AAgent SSystem

Remote place communication media

Remote
Place

PC

Arm

Laser pointer

Camera

Agent RobotsAgent Robots

・Movement
・Obstacle Avoidance
・Posture Stabilization

Camera & Laser pointer

Autonomy
・Movement
・Obstacle Avoidance
・Posture Stabilization

Camera & Laser pointer

Autonomy
・Movement
・Obstacle Avoidance
・Posture Stabilization

Camera & Laser pointer

Autonomy

RAC

RAC

The Internet

Daily Life Assist

Cooperation Work Support

Fig. 1 Outline of Physical Agent System

< management >
･ Preservation of task and re-execution command
･ Communication with Client-Server(TCP/IP)
･ Communication with Data-Server(TCP/IP)
･ Communication control of CAN bus
･ Process of camera image

< device >
H8S for Camera/LP control

Real-time OSReal-time OS

< on board>
･ Camera
･ LP
･ H8S

< management >
･Camera/LP control
･Get Angle’s value
･Command in another device

< device >
H8S for Crawler control

Real-time OSReal-time OS

< on board>
･ Machine ･ PSD
･ Ultrasonic Sensor
･ H8S

< management >
･Machine control
･Get Sensor’s value
･Command in another device

< management >
･Machine control
･Get Sensor’s value
･Command in another device

< device >
H8S for Arm control

Real-time OSReal-time OS

< on board>
･ Arm
･ H8S

< management >
･Arm control
･Command in another device

< device >
H8S for Power management

Real-time OSReal-time OS

< on board>
･ H8S

< management >
･Task control
･Get Current’s value
･Store Current/Voltage logs
･Command in another device

CAN

< processor >

Agent-Server
(windows2000)
Agent-Server

(windows2000)

< on board>
･wireless LAN
･PCI
･IP7000

Fig. 2 Structure of Physical Agent Robot

2618

connected each other via Controller Area Network
(CAN). This architecture makes it easy to add and
modify subsystems.

3. THE PROBLEM OF DEVELOPMENT
TO DESIGNING SERVICES OF

COMPONENTS
Development of service for the modules that

construct the PAR becomes more and more difficult as
extending systems by adding new function modules. In
such cases, it sometimes happen that the software for
other systems cannot applied and the engineer is forced
to develop it from scratch when develop the new
modules. Therefore, the robot development cost seems
to be increasing.

We develop PAR system as easily adding or
customizing subsystems to adapt any requests by
connecting functionally distributed subsystems with the
CAN. But the efficient method is not exist that combine
with subsystems easily. It becomes burden of the
developer. Therefore, we have to develop the framework
to develop robot service more efficiency.

4. OpenRTM-aist
OpenRTM-aist is one kind of the RT-Middleware that

is developed by AIST to reduce system developing costs.
It provides common framework of RT component and
interfaces as shown in Fig.3. It’s based on CORBA
(Common Object Request Broker Architecture)[7]
technology to construct distributed modules on network.
CORBA is standardized by OMG (Object Management
Group). The robot system, which uses the RTM, consist

of distributed object software components called
RT-Component (RTC). Figure 3 shows state chart of
RTC. The robot system is constructed as distributed
RTCs on network.

On the CORBA environment, it's little problem to
adapt software code to new environment. Thus,
OpenRTM-aist can take advantages to develop robot
systems by providing interoperability and reusability of
software.

5. OBJECTIVES OF THIS RESEARCH
We introduce OpenRTM-aist into the development of

PAR in order to reduce the development cost. However,
two specific issues should be solved to take advantage
of RTM to apply it to embedded systems. The issues of
this research are discussed next.

5.1. Supporting RTC on the field bus
Since the OpenRTM-aist is based on CORBA, it is

effective to develop the robot system which uses TCP/IP
communication. But, this means that it is put restriction
on robot systems to use TCP/IP communication. It is
desirable to apply RTM to arbitrary communication
protocols used in various field buses.

 Supporting field bus on RTC
Ethernet needs more wiring compared with bus type

wiring, because Ethernet is star type wiring. This is
serious problem to develop robot system which has to
make it compact. Therefore, small volume wiring
provided by field buses such as CAN is preferable as an
internal network within a robot body.

Fig. 3 State-Chart of RT-Component

2619

 Reliability of communication
Inside of the robot, the serious EMC noises from the

various electronic devises exist. Such noises cause
missing of the control data. In such environment, the
reliable field bus like CAN would achieve highly
reliable communication in the internal network.

5.2. Sipporting RTC on Embedded processors
The RTM only support Linux PC. However,

conventional PCs require large electric power
consumption than embedded processing processor. And
It’s impractical to use PCs to provide a simple function
like motor–control module even if merits of RTC are
took into account.

Therefore, we set these two objectives mentioned

above. These can reduce the robot volume as well as
suppressing electrical power consumption of the robot.

6. LwRTC ON RTC-CAN SYSTEM
In the PAR， subsystems communicate with each

other using CAN. However, the openRTM-aist supports
only Ethernet interface. Therefore, we need to develop
new system to support CAN without any changes in the
openRTM-aist. As the simpler RTC on low level MPU,
the RTC-Lite[8] has being developed in AIST. Extending
this research, we developed so called RTC-CAN System
that is able to pass RTM messages on CAN. Figure 4 is
overview of RTC-CAN System. Each subsystem runs
their proxy-RTC on the master controller. The mater
controller has performance enough to run Linux and
CORBA. All CORBA messages from and to both
subsystem and external RTC modules are passed
through these proxy-RTCs. Each subsystem controller
(embedded processor) has software (called CAN-RTC)
which supports internal state of the RTC. CAN connects
each proxy-RTC and CAN-RTC. This system can
provide RTC functions to CAN nodes.

Thus, with this mechanism, it is possible to run RTM
on low performance embedded processing system of
where CORBA is not supported. In addition, the
LwRTC architecture of proxy RTC and CAN-RTC can
be ported easily to other device interface networks.

6.1. Supporting CAN interface on RTM
In the RTC-Lite, the interface which connects

between proxy-RTC and CAN-RTC were not defined.
Therefore, we introduced the gateway which converts
Ethernet and CAN protocol each other. We call this
“TCP/IP-CAN Gateway”. The H8S MPU board which
has both interfaces of Ethernet and CAN is adopted as
the Gateway. Conversion of protocol is done with the
software on TCP-IP/CAN Gateway.

6.2. Software of RTC for subsystem control
There are two problems to make software of RTC for

subsystem control.
 CORBA framework is not supported on H8S

MPU
 No support of CAN interface in CORBA

In the RTC-CAN system, RTC is divided into two
parts, CAN-RTC and Proxy-RTC. The CAN-RTC takes
charge of subsystems’ original function. Proxy-RTC
takes charge of CORBA communication function.
CAN-RTC does not have the communication function
using CORBA. But, internal state and the transition are
made as specified by the specification of RTM. The
Proxy-RTC is allocated on embedded processing system,
SH4 which can run CORBA, and CAN-RTC is
allocated on subsystem controller, H8S. And we connect
between these two with CAN.

6.3. Location of Proxy-RTC
The robot system which consists of embedded

processing system with LwRTC, it is necessary to use
the server outside. However, in this way, the external
server processes all of the communication that
cooperation subsystem each other.
Because of that there is a possibility communication
bandwidth being wasted with sending and receiving of
the control data.

As a result, the communication with the outside can
be suppressed to the minimum, because the control of
the robot is concluded in the robot. And only the robot
makes operation possible without external server.

6.4. RTC-CAN protocol
Communication protocol that using RTC-CAN

system is provided originally based on the specification
of RTM.

The data communication and the command
communication are supported in the RTC-CAN. The
command communication is the communication to
control internal states of RTC, and the data
communication is a communication of the robot to
transfer the control data. In control communication, it is

CAN deviceCAN device

MPUMPU
RTOS (LINUX)

Proxy RTC Proxy RTC Proxy RTCProxy RTC

CAN

CAN-RTC

CAN deviceCAN device

CAN-RTC

CAN deviceCAN device

CAN-RTC

CAN deviceCAN device

CAN-RTC

Ethernet
(CORBA)

RTC-CAN GatewayRTC-CAN Gateway

RTC-CAN Proxy Program

Ethernet

Fig. 4 Overview of RTC-CAN System

2620

also possible to transmit control messages that cannot be
transmitted in one message by dividing into two or more
messages.

The RTC-CAN system divides the ID field of the
CAN message as shown in Figure 5. And example of
RTC-CAN communication is shown in Figure 6.

7. RTC-CAN TEST SYSTEM
--CRAWLER CONTROL--

We designed crawler control system of the PAR as a
test system to verify performances of RTC-CAN
System.

7.1. System Configuration
Figure 7 shows the test system configuration. Table 1

shows hardware we used. This test system was
implemented to the crawler subsystem in PAR04R.

Because there’s no available micro-CPU-board
equipped with CORBA that supports both Ethernet and
CAN. Therefore, we adopted the RTC-CAN Gateway
using H8S MPU between the master controller and
subsystems to convert Ethernet and CAN.

7.2. LwRTC Operation Experiments
LwRTC operation experiments are as follows:
Confirmation of basic crawler operation (forward and

back, turns right and left), measurement of
communication time

7.3. Experimental Results
We confirmed that the crawler-subsystem is

recognized as the RTC, and verified the execution of
basic operations (forward and back, turns right and left).
Thus, the functions of LwRTC were achieved. Figure 8
shows crawler motion. However, it takes too much time
--20ms/one-way, 40ms/roundtrip (practical bound) -- to
communicate control data.

Latency of the gateway to convert data is up to 16ms.

Message ID

Message ID

Message ID

Sender Node ID Receiver Node ID

Sender Node ID Sender Object ID

Receiver Node ID Receiver Object ID

Command Send/Reply Message (RTC State Control)

Data Message from CAN-RTC

Data Message from TCP/IP-CAN Gateway

Fig. 8 Using ID field of

CAN Message on RTC-CAN

Proxy-RTCProxy-RTC

InPort RTC

Proxy-RTCProxy-RTC

OutPortRTC

CAN-RTC ID:0000CAN-RTC ID:0000

InPort
ID:0001

RTC
ID:0000

0000-0001
0001-0001

Subscribing Table

CAN-RTC ID:0001CAN-RTC ID:0001

OutPort
ID:0001

RTC
ID:0000

Proxy CAN
Data Communication
ID: 001-0000-0001

CAN Proxy
Command Send

ID: 010-0001-1111

Proxy CAN
Command Send

ID: 010-1111-0000

CAN Proxy
Data Reply

ID: 011-0000-1111

Proxy CAN
Command Reply

ID: 011-1111-0001

CAN CAN
Command Send

ID: 010-0000-0001

CAN CAN
Command Reply

ID: 011-0001-0000

CAN CAN
Data Communication
ID: 001-0001-0001

CAN Proxy
Data Communication
ID: 001-0000-0001

Fig. 7 Example of RTC-CAN Communication

Fig. 6 Crawler control test

Table 1 Hardware List

Em bedded System C ontroller
(execute Proxy-RTC)

HRP-3P-C N
(G eneral Robotix,Inc.)
C PU: SH4 7751R
 (HD 6417751RBP240M)

TCP/IP-C AN G ateway Controller

H8S2638F evaluation kit
(hokuto denshi,C o.Ltd)
C PU: H8S/2638F
 (HD 6417751RBP240M)

Crawler Subsystem Controller

HSB8S2638Q
(hokuto denshi,C o.Ltd)
C PU: H8S/2638W F
 （HD 64F2638W F20 FP-128）

SH4

RTC-CAN Gateway

Crawler Subsystem

Input-RTC Crawler
proxy-RTC

Ethernet

CAN

RTC-CAN
Proxy Program

logging-RTC

Ethernet：
Input control data
on Telnet connection.

Crawler
CAN-RTC

Control PC

Fig. 5 RTC-CAN Test System(Crawler Control)

2621

This is because low performance of H8S used in the
gateway. At this latency, the Gateway cannot accept
RTC control command because converting-process
consumes whole computing resources. Communication
performance is also far from satisfaction. It’s difficult to
achieve short-cycle and feedback-control under this
specific gateway configuration.

8. DISCUSSION
Experimental results shows a possibility to apply

RTM to PAR04R by using RTC-CAN system that is the
implementation of LwRTC. The proposal of LwRTC
confirmed possibility to port RTC in any other network
interface without Ethernet.

We confirmed that the proposed LwRTC can achieve
RTM functions. However, the performance was too low
because of low CPU performance in the gateway.

8.1. Future Works
We should improve performances of the gateway. We

are going to propose to stop using this Gateway with
higher MPU as well as to apply this system to SH4
board which equipped both Ethernet and CAN.

9. ACKNOWLEDGMENTS
This research is being conducted as a part of the

“Project for the Practical Application of
Next-Generation Robots” consigned by New Energy
and Industrial Technology Development Organization
(NEDO).

REFERENCES
[1] N.ANDO, “RT-Middleware Distributed

Component Middleware for RT (Robot
Technology)”, Intelligent Robots and Systems,
2005. (IROS 2005). 2005 IEEE/RSJ International
Conference on, pages 3555 – 3560

[2] RT-Middleware Official Web:
http://www.is.aist.go.jp/rt/

[3] K.OGAWA, et al.,” Physical Agent System:
System Concept and Remote Control Service
using ORiN”, ISR2005 IEEE 36th International
Symposium on Robotics,TH4H4

[4] “Research of distributed control system for the
Physical Agent System(PAS)”, Yosuke MATSUNO,
Makoto MIZUKAWA, Yoshinobu ANDO, SICE
SI2004

[5] M.MIZUKAWA, et al.,” Implementation and
applications of open data network interface
'ORiN'”, SICE 2004 Annual Conference, pages
1340-1343,vol.2,2004

[6] Open Robot/Resource interface for the Network
(ORiN) Official Web:
http://www.orin.jp/

[7] Common Object Request Broker Architecture
(CORBA) Official Web:
http://www.corba.org/

[8] “Lightweight RT-Component for Embedded
systems : RTComponent-Lite”, Noriaki ANDO,
Takashi SUZUKI, Manabu INAGAKI, Kenichi
OHARA, Koutaro OHBA, Kazuo TANIE, SICE
SI2005

2622

	Main Menu
	Previous Menu
	Search CD-ROM
	Print

	Text67: 89-950038-5-5 98560/06/$10 © 2006 ICASE

