RTC:Stage User Guide

Geoffrey Biggs
geoffrey.biggs@aist.go.jp

November 4, 2010

1 Introduction

RTC:Stage is an RT Component for the OpenRTM-aist middleware. It provides access to a
simulated world being run by the Stage! simulator. All models in the world can be controlled
and their data utilised by other components. The models that can be accessed outside of the
component can be filtered to provide a smaller, more manageable component when using large
simulations. Additional model proxies can be created and added to the component through a
simple plugin system.

A key feature of the component is that its available ports change to match the world being
simulated. If the simulated world contains two robots, separate ports will be available for accessing
each robot. If multiple lasers are present in the world, multiple laser interfaces will be created.
See the Section 5.1 for details on port naming.

This software is developed at the National Institute of Advanced Industrial Science and Tech-
nology. Approval number H22PRO-1167. The development was financially supported by the New
Energy and Industrial Technology Development Organisation Project for Strategic Development
of Advanced Robotics Elemental Technologies. This software is licensed under the Eclipse Public
License -v 1.0 (EPL). See LICENSE.TXT.

2 Requirements

RTC:Stage requires the C++ version of OpenRTM-aist-1.0.0 and the latest version of Stage from
the Git repository?. At the time of writing, the most recent release of Stage does not contain
several necessary API functions used by the component.

RTC:Stage uses the CMake build system®. You will need at least version 2.6 to be able to
build the component.

RTC:Stage requires libltdl, part of GNU’s libtool*, for loading plugins.

Stage itself does not run on Windows. The component is therefore only available on Linux and
MacOS X.

3 Installation

Follow these steps to install RTC:Stage:

1. Download the source, either from the repository or a source archive, and extract it some-
where.

tar -xvzf rtcstage-1.0.0.tar.gz

Lhttp:/ /playerstage.sourceforge.net/
2http://github.com/rtv/Stage
Shttp://www.cmake.org/
4http://www.gnu.org/software/libtool/

2. Change to the directory containing the extracted source.
cd rtcstage-1.0.0

3. Create a directory called “build”:
mkdir build

4. Change to that directory.
cd build

5. Run cmake.

cmake ../

6. If no errors occurred, run make.

make

7. Finally, install the component. Ensure the necessary permissions to install into the chosen
prefix are available.

make install

8. The install destination can be changed by executing ccmake and changing the variable
CMAKE_INSTALL_PREFIX.

ccmake ../

The component is now ready for use. See the next section for instructions on configuring the
component.

RTC:Stage can be launched in stand-alone mode by executing the rtcstage_standalone ex-
ecutable (installed into ${prefix}/bin). Alternatively, librtcstage.so can be loaded into a
manager, using the initialisation function rtcstage_init. This shared object can be found in
${prefix}/1lib or ${prefix}/1ib64.

4 Configuration

RTC:Stage has a distinct start-up process that is necessary to dynamically create ports to match
the simulated world. This start-up process means that the configuration values must be specified
in a configuration file, rather than through RTSystemEditor or similar tools.

To change the component’s configuration, provide a file similar to the one shown below.

configuration.active_config: simple

conf.simple.world_file: /usr/local/share/stage/worlds/simple.world
conf.simple.gui_x: 640

conf.simple.gui_y: 480

conf.simple.limit_models:

It is possible to specify more than one configuration set in the file. The set used when the com-
ponent initialises is specified on the first line. Give the file a suitable name, such as “stage.conf”.
Then add to rte.conf the following line:

Simulation.RTC_Stage.config_file: stage.conf

The available configuration parameters are described in Table 1.

5 Ports

The ports provided by the component are dynamically created when the component is initialised.
They are created to match the models available in the world.

Parameter Effect

world_file The path of the world file to load.

gui_x The width of the window to display the simulation in. This option currently has
no effect.
guiy The height of the window to display the simulation in. This option currently

has no effect.
limit_models The list of model filters. See Section 6.1 for details.
plugins A list of paths to proxy plugins that should be loaded. See Section 6.2 for details.

Table 1: Available configuration parameters.

Model type Model name Port name

Robot r0 r0_vel_control
Laser r0.laser:0 r0_laser_0_ranges
Camera rO.camera:1 rO_camera_l_image

Table 2: Examples of the port naming scheme.

5.1 Naming

The port names reflect the world, indicating which models they provide access to. For example,
if the world contains a robot named “r0,” a set of ports will be created providing access to its
velocity control, odometry output, geometry service, and so on. These ports will all begin with
the prefix “r0_”. See Table 2 for examples of how the port names are created. Note that the
special characters “.” and “” are replaced by underscores (“.7).

6 Model proxies

The RTC:Stage component uses model proxies to provide access to the models contained in the
simulated world. Each instance of a model in the world corresponds directly to an instance of a
model proxy in the component. Several proxies are provided with the component. These cover
the most popular models supported by Stage. They are described in Table 3.

In the event that the user wishes to use a model from Stage for which no proxy is provided, a
plugin proxy can be written. See Section 6.2 for details.

6.1 Filtering models

When using a large simulation, the number of proxied models, and so the number of ports provided
by the component, may become unmanageable. To counter this, the user can specify a set of model
name filters in the component’s configuration. Only those models who’s names match one of the
filters will have proxies created.

The filter format is a list of strings separated by commas. Each string is a filter. A model’s
name must match at least one filter for a proxy to be created. The wild card “*” can be used to
specify flexible filters. The filter format is shown in Table 4.

For example, consider a simulation containing two robots, “r0” and “rl.” “r0” has a laser
scanner and a camera, while “r1” has two laser scanners. The simulated component would provide
proxies for the following models:

e 10
e r(.camera:0

e r(.laser:0

Proxy Ports Data type Port description
Actuator vel_control TimedDouble Velocity control of the actuator.
pos_control ~ TimedDouble Position control of the actuator.
state ActArrayState Current status of the actuator.
current_vel TimedDouble Current velocity of the actuator.
sve GetGeometry2D Get the pose and size of the actuator.
Camera control TimedPoint2D Control over pan and tilt.
image Cameralmage Colour image captured by the camera, in
RGBA.
depth Cameralmage Depth image captured by the camera, in 8-bit.
sve GetGeometry2D Get the pose and size of the camera.
Fiducial fiducials Fiducials List of currently-detected fiducials.
svc GetGeometry2D Get the pose and size of the fiducial sensor.
Gripper state GripperState Status of the gripper.
sve GetGeometry2D Get the pose and size of the gripper.
GripperControl Open and close the gripper.
Laser ranges RangeData Range values measured by the laser.
intensities IntensityData Intensity values measured by the laser.
sve GetGeometry2D Get the pose and size of the laser sensor.
Position vel_control TimedVelocity2D Velocity control of the robot.
pose_control TimedPose2D Pose control of the robot.
current_vel TimedVelocity2D Current velocity of the robot.
odometry TimedPose2D Value of the robot’s odometry sensor.
sve GetGeometry2D Get the pose and size of the robot.
SetOdometry2D Set the value of the odometry sensor.
Table 3: The proxies provided with RTC:Stage.
o1l

e rl.laser:0

e rl.laser:1

Without any filters, this would produce an instance of RTC:Stage with a large number of ports.
If the user is only interested in a subset of the available models, specifying an appropriate set of
filters will restrict the number of proxies created. Table 5 shows examples of which models will be
proxied for different filter strings.

6.2 Proxy plugins

The Stage simulator supports writing model plugins. These provide additional functionality in the
simulation, allowing new device types to be simulated easily without modifying Stage itself. Many
robot developers may wish to implement new devices in this way for their work. Such models
are not supported by default in RTC:Stage. To provide support, a proxy plugin that matches the
model plugin must be created. Plugins can also be created for models built into Stage, such as
the ModelPosition model, and new proxies can be created that over-ride the proxies included in
RTC:Stage.

A proxy plugin provides an implementation of the ModelProxy interface. It must implement
the abstract methods of this interface, and is responsible for adding any relevant ports to the
RTC:Stage component. It is also responsible for moving data between these ports and the simu-
lation.

In addition, proxy plugins must export two symbols:

Filter Effect

filter Match the entire model name.

*filter Match at the end of the model
name.

filter* Match at the beginning of the
model name.

filter Match anywhere in the model
name.

filterl*,filter2x Two filters.

Table 4: The available filter formats.

Filter string Created proxies

r0 r0

r0* r0, r0.camera:0, r0.laser:0
*camera:0 r0.camera:0

*:0 r0.camera:0, r0.laser:0, rl.laser:0
*laserx r0.laser:0, rl.laser:0, rl.laser:1
r0.laser*,rl.laserx r0.laser:0, rl.laser:0, rl.laser:1
rl,*laser:0 r0.laser:0, rl, rl.laser:0, rl.laser:1

Table 5: The result of various filters on the created model proxies.

e GetProxyType - Returns the model type the plugin is for.
e ProxyFactory - Constructs an instance of the proxy.

To compile a proxy plugin, use the BUILD_PROXY_PLUGIN CMake macro, available in the
RTCStagePlugin CMake file.

See the example plugins for more details on creating proxy plugins. Generally, copying an
example and modifying it to meet the new model will allow rapid development.

6.3 Example plugins

Two example plugins are included with the component. They are installed with the component
in ${prefix}/share/rtcstage/examples/, where ${prefix} is the location in which RTC:Stage
was installed. The plugins can be compiled using CMake, e.g.:

1. cd ${prefix}/share/rtcstage/examples/blobfinder/
2. mkdir build

3. cd build

4. cmake ../

5. make

6.3.1 Blobfinder proxy

This example plugin provides a proxy to Stage’s blob finder sensor model. It demonstrates using
your own IDL in a plugin to provide the necessary data types.

6.3.2 Position proxy

This plugin demonstrates replacing the default position model proxy with a custom proxy. By
loading the proxy provided by this plugin, the default position proxy is over-ridden in the compo-
nent. The new proxy provides an alternate interface to the model using different data types.

